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Abstract. The interaction of different kinds of solitary waves of the Camassa–Holm equation is
investigated. We consider soliton–soliton, soliton–cuspon and cuspon–cuspon interactions. The
description of these solutions had previously been shown to be reducible to the solution of an
algebraic equation. Here we give explicit examples, numerically solving these algebraic equations
and plotting the corresponding solutions. Further, we show that the interaction is elastic and leads to
a shift in the position of the solitons or cuspons. We give the analytical expressions for this shift and
represent graphically the coupled soliton–cuspon, soliton–soliton and cuspon–cuspon interactions.

1. Introduction

In this paper we will be interested in the study of the interaction of different kinds of travelling-
wave solutions to the Camassa–Holm (CH) equation, which reads

ut − uxxt − 4ux + uuxxx − 3uux + 2uxuxx = 0. (1)

This equation was obtained in [1] to describe the dynamics of long waves in shallow water,
including higher-order corrections. Although it has been shown to be a completely integrable
equation and to possess several kinds of interesting solutions [1–7], many aspects of its
integrability are still under consideration. For example, the initial value problem has not
been solved completely, although the particular case with a periodic initial condition was
investigated in [8,9].

Among particular solutions of equation (1) there are soliton solutions and cuspon solutions.
Both are localized travelling waves. The study of the interaction of these waves and, in
particular, the interaction of different kinds of travelling waves, is, naturally, a matter of
interest.

As an integrable equation, explicit solutions to equation (1) may be constructed. In [6,7]
a class of (multi)-solitary wave solutions was obtained by using the∂̄-problem, encompassing
solutions containing solitons and cuspons among others. These solutions are related to the roots
of an algebraic equation, allowing us to reduce the construction of this kind of solution to the
problem of calculating the roots of the above-mentioned algebraic equation. However, only in
the simplest case can the roots be found explicitly. For instance, in the case where this equation
is polynomial and of third degree, the corresponding solutions are single solitary waves. They
are given in [6,7]. The multi-soliton–cuspon solutions are related to the solutions of algebraic
equations of degreeP > 4. Their construction must involve numerical calculations.

These solutions are considered here. We restrict ourselves to two-wave interactions and
consider numerically soliton–cuspon, soliton–soliton and cuspon–cuspon interactions. Note
that we do not solve the CH equations directly by numerical methods. Rather, we proceed
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as far as possible with analytical methods and use numerical computations only in the final
stage, to solve the algebraic equations and reconstruct the exact solutions. We find that the
interaction is elastic in all cases and leads to a shift in the position of the soliton or cuspon.
We derive analytical expressions for the shift after any number of soliton–cuspon collisions.
They are compared with the numerical calculations for a coupled interaction. The underlying
structure that ensures elasticity even between different kinds of solitary waves is the fact that
these solutions may be obtained from the soliton solutions of another integrable equation (the
deformed Sine–Gordon equation [7]).

2. Soliton–cuspon interaction

TheN -soliton–cuspon solution of equation (1) may be represented by the system of equations

ψ(0) = −1 +
N∑
k=1

1

1− bk ψ(bk)χ
αk exp(αkηk) (2)

ψ(bj ) = 1

bj − 1
+

N∑
k=1

1

1− bk − bj ψ(bk)χ
αk exp(αkηk) (3)

ψ(0) = kχ χ = exp(8(x, t)) u = 8t

8x

ηk = −αk(x − x0k − vkt) vk = βk/αk
αk = 2bk − 1 βk = 1

bk
+

1

bk − 1

(4)

wherex0 is the initial position and the constantsbk should satisfy the conditions

bk 6= 1
2, 0, 1 bk + bj 6= 1 bk 6= bj k 6= j.

Note that the system of equations (2), (3) is an algebraic one. For the sake of completeness
and clarity, let us briefly discuss the one-soliton (cuspon) case, obtained by puttingN = 1 into
equations (2), (3). We write down the expressions for the amplitudes (ucusp, usol) and velocities
(vcusp, vsol) of the cuspon and the soliton and corresponding intervals of the parameterb1, which
determine whether the solution is a cuspon or a soliton:

ucusp= (2b1− 1)2

b1(1− b1)
vcusp= − 1

b1(b1− 1)
< 0 b1 < 0 b1 > 1 (5)

usol = 1

b1(1− b1)
vsol = − 1

b1(b1− 1)
> 0 0< b1 < 1. (6)

One can see that the amplitude and velocity do not change if we replaceb1 by 1− b1. For this
reason in the following we will consider onlybk in the interval12 < bk < +∞.

In figure 1 we plot several examples of soliton and cuspon solutions, obtained by solving
the above set of equations. To find the roots of these algebraic equations we use the Laguerre
method [10,11] or the bracketing and bisection method [10] depending on whether the algebraic
equation is polynomial or transcendental one.

Let us now return to the general multi-soliton case. The algebraic system (2)–(4) can be
reduced to the algebraic equation of the form
N∑
k=0

∑
j1<j2<···<jk<N

Aj1j2...jk (χ) exp(−αj1ηj1 − αj2ηj2 − · · · − αjkηjk ) = 0 η0 = 0 (7)

whereAj1j2...jk are functions ofχ whose highest degree is(1 + αj1 + αj2 + · · · + αjk ). Even
in then = 2 case, we have to numerically solve this algebraic equation, which is of no great
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Figure 1. Soliton and cuspon solutions of the CH equation.

difficulty. However, it is not evident whether the algebraic equation (7) hasreal or imaginary
solutions. We will be only interested in the solutions that generate real solutions to the CH
equation.

In figures 2–4 we plot the soliton–soliton, soliton–cuspon and cuspon–cuspon solutions
and give the related shifts. To do this we find the functionχ by solving the equation (7)
numerically withN = 2 and different values of parametersb1 andb2: (b1, b2) = ( 3

4,
5
8),

(b1, b2) = ( 3
4,

5
4) and (b1, b2) = ( 3

2,
5
4), for soliton–soliton, soliton–cuspon and cuspon–

cuspon interactions, respectively. After this, the solutionu of CH, equation (1), is obtained by
u = χt/χy , which follows immediately from equation (4). In numerical calculations we use the
C program implementation of Laguerre’s method [10, 11] to find the roots of the polynomial
equation. We choose only the roots which lead to the real bounded solutions of CH. For
convenience, we plot the graphics in the frame moving with the velocity of the noninteracting
slow soliton (cuspon). The horizontal axis representsη = x−vmint , wherevmin = min(v1, v2)

andvk = 1/(bk(bk − 1)), so that the slow soliton (cuspon) is centred atη = 0 before or after
interaction.

3. Analytical results

We now reconsider equation (7) and extract analytical expressions for the shifts between the
solitons (cuspons). Let us consider the situation when all solitons and cuspons are separated
from one another at the initial moment (t = 0) so that the interaction between them is negligible.
This can be done by choosing the constantsx0k in an appropriate way:x01 > x02 > · · · > x0N .
Let us first consider the soliton (cuspon) furthest to the right. Recall that solitons and cuspons
are moving to the left and right, respectively, so that a soliton from the right can interact only
with solitons with smaller velocity and with cuspons. At the point where the right soliton
(cuspon) (index 1) is situated one has

η1 ∼ 0 − αkηk � −1 k 6= 1

so that the leading order in equation (7) gives us

A0(χ) +A1(χ) exp(−α1η1) = 0. (8)

This is the usual solitary wave solution, examined in [7]. We represent this equation in the
following form:

S ≡ S(χ, η1) = (1− 2b1)(b1− 1)2(1− kχ)− exp(−α1η1)χ
α1(b2

1 + kχ(b1− 1)2) = 0.
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Figure 2. Soliton–soliton interaction.

Figure 3. Soliton–cuspon interaction.

(9)

Consider the interaction with the first wave. This occurs when the another soliton (cuspon)
(index 2) collides with the first one, goes through it and moves for a long enough distance for
interaction to be negligible. In this position one has

η1 ∼ 0 − α2η2� 1 − αkηk � −1 k 6= 1, 2

and the leading term becomes of the general form

S ≡ exp(α2η2)f2(b1, b2)χ
α2S(χ1, η1−41) = 0 (10)
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Figure 4. Cuspon–cuspon interaction.

with

χ1 = q(b2)χ q(b2) =
(

1− b2

b2

)2

(11)

412 = − 2

α1
ln

∣∣∣∣b1 + b2 − 1

b1− b2

(
1− b2

b2

)α1
∣∣∣∣ . (12)

After the interaction the second soliton (cuspon) has the shift

421 = 2

α2
ln

∣∣∣∣b1 + b2 − 1

b2 − b1

(
1− b1

b1

)α2
∣∣∣∣ . (13)

The above expressions for the shifts are analogous to ones obtained in [2] for soliton–soliton
interaction.

Notice that equation (10) is simply equation (9) with the replacement

χ → χ1, η1→ η1−41.

Thekth solitary wave CH equation after the interaction with(k + 1)th has the same shape as
the original solitary wave with the shift4k,k+1 in x, so that its position is̃x0k = x0k −4k,k+1,
wherex0k is its position before the interaction. Analogously, after interacting with theKth
solitary wave, the leading term at the pointη1 ∼ 0 will be

SK ≡ exp(−α2η2 − · · · − αKηK)fK(b1, . . . , bK)χ
α2+···+αK (S(χK, η1− 4̃1K) = 0

with

χK = q(b2, . . . , bK)χ q(b2, . . . , bK) =
K∏
m=2

(
1− bm
bm

)2

4̃1K =
K∑
m=1

41m (14)

41m = − 2

α1
ln

∣∣∣∣b1 + bm − 1

b1− bm

(
1− bm
bm

)α1
∣∣∣∣ . (15)

The solitary wave has the original shape with shift4K in its position: φK = φ0 − 4̃K .
Furthermore, notice that equation (15) for the shift41m does not depend on the type of solitary
waves (solitons or cuspons) under consideration.
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Finally, let us present a brief analysis of the expression for the shift (12). There are five
resonant points:

b1→ b2 b1→ 1− b2 (16)

b2→ 1 b2→ 0 b1→ 1
2 . (17)

Equation (16) shows that the maximal interaction (shift) occurs for the waves moving with
a small difference in velocity. The resonance of this kind occurs only for soliton–soliton or
cuspon–cuspon interactions, which follows from equations (5), (6). About a soliton–cuspon
interaction, we can only say that the shift of the slow wave is larger than that of the fast wave.
Three other resonances (equation (17)) reflect the fact that when two solitons (cuspons) interact
the shift of the slow one is larger than the shift of the fast one.
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